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*S Supporting Information

ABSTRACT: Long-lived conformational states and their
interconversion rates critically determine protein function
and regulation. When these states have distinct chemical shifts,
the measurement of relaxation by NMR may provide us with
useful information about their structure, kinetics, and
thermodynamics at atomic resolution. However, as these
experimental data are sensitive to many structural and dynamic
effects, their interpretation with phenomenological models is
challenging, even if only a few metastable states are involved. Consequently, approximations and simplifications must often be
used which increase the risk of missing important microscopic features hidden in the data. Here, we show how molecular
dynamics simulations analyzed through Markov state models and the related hidden Markov state models may be used to
establish mechanistic models that provide a microscopic interpretation of NMR relaxation data. Using ubiquitin and BPTI as
examples, we demonstrate how the approach allows us to dissect experimental data into a number of dynamic processes between
metastable states. Such a microscopic view may greatly facilitate the mechanistic interpretation of experimental data and serve as
a next-generation method for the validation of molecular mechanics force fields and chemical shift prediction algorithms.

■ INTRODUCTION

The basic functions of biological systems, including self-
assembly, regulation, and signal transduction, are increasingly
well understood in terms of protein structure and dynamics
through experimental and computational studies.1−7 This fact
has sparked much innovation in computational methodology
aimed at combining experiments with computer simulations in
order to generate models of proteins as conformational
ensembles.8−10 However, while all of these methods allow us
to map out the conformational landscape of proteins, they are
not tailored to resolve the conformational exchange processes
on this landscape temporally.11 This latter fact has stifled the
integration of dynamic experimental data. Unbiased molecular
dynamics (MD) simulations on the other hand have a long
history in aiding the interpretation of these dynamic
quantities.12−16 This approach has recently enjoyed a renewed
interest with increasingly powerful computers and methodo-
logical innovations17−22 and led to the characterization of
microsecond chemical-exchange dynamics.23−28

The chemical shift measured by nuclear magnetic resonance
(NMR) spectroscopy is a sensitive structural probe, and in
biomolecules, they may yield information about a wide range of
geometrical features including dihedral angles and the
proximity to ring-currents at the atomic level.29 The
fluctuations of the isotropic chemical shift due to exchange
between different conformational states (chemical exchange)
give rise to an additive contribution to the measurable
relaxation rates as R2

ex.30 With specially tailored NMR
experiments, we may isolate R2

ex 31−33 or attenuate it in a
gradual, controllable manner.34−37 The latter case, often

referred to as relaxation dispersion (RD) experiments, allows
us to probe the spectral density of conformational or chemical
exchange process. These experiments are therefore sensitive to
the chemical structures, their thermodynamic weight, and their
mutual exchange rates. As these experiments typically allow us
to probe the dynamics of multiple sites simultaneously, they are
potentially exquisitely information dense. However, due to their
complex dependence on structural, kinetic, and thermodynamic
parameters, their analysis is equally intricate. commonly used
analysis framework is based upon the Bloch−McConnell
equations38−40 in which the chemical exchange process is
described by an N-site lattice jump model.41,42 The limitation of
this approach is that if multiple conformational states undergo
mutual chemical exchange, these are typically difficult to
deconvolute from the averaged experimental signal. This
problem makes it necessary to adopt simpler models and
often invoke experiment-specific assumptions in order to make
data analysis tractable,43,44 robust and to minimize the risk of
overfitting. Such regularization comes at the cost of the detail of
the model.40 Still, even under these simplifying assumptions,
detailed characterization can be difficult unless experimental
data are measured at multiple magnetic fields.23,45

The dramatic improvement in high-performance and high-
throughput MD simulation has generated a need for rigorous,
systematic analysis of the large amounts of MD simulation data.
One popular framework to analyze large amounts of
distributedly generated simulation trajectories are Markov
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state models (MSMs).46−52 MSMs are generated by dividing
the conformational space into microstates and estimating a
matrix of transition rates (or probabilities) between these states
from MD simulation data. If such a model is properly
constructed, it can accurately predict long time-scale dynamics
and stationary probabilities/conformational free energies from
simulations which are individually much shorter than the
slowest relaxation time scales of the system. In this way, we can
obtain a complete description of the conformational exchange
processes observed in our simulated system represented as a
rate matrix and structural representations for each microstate;
the remaining problem is to map this microscopic model to the
experimental observation. The more recently established
hidden Markov state models (HMSM) are coarse-grained
Markov state models which model the kinetics in terms of the
transitions between a few metastable states, and a mapping
from each metastable state to the microstates of the
conformational ensemble.53 HMSMs thus provide a coarse-
grained view that is more intuitive and easy to interpret.
In the present work, we show how to use MSMs and

HMSMs as mechanistic models of the chemical exchange
contribution to protein NMR relaxation. We show how this
approach allows us to resolve individual processes that
contribute to the measured chemical exchange signals. Thus,
the present framework avoids the conventional approach to fit
phenomenological models to experimental data and thus also
avoids the associated problems with overfitting and model
unidentifyability. This is achieved as the models are obtained
bottom-up from microscopic transitions observed in the MD
data and are connected to experimentally observed signals by
predicting the spectroscopic observable. While the approach is
sensitive to systematic errors in both current models for
chemical shift prediction and current molecular mechanics
force fields, it is a principled approach to link microscopic
simulations to NMR experiments and will directly benefit from
improvements in chemical shift prediction models and force
fields made in the future. Despite current limitations, we show
that our approach can provide useful qualitative and sometimes
quantitative predictions. We envisage that this framework
improves the mechanistic analysis of complex chemical
exchange data and will serve as a diagnostic tool that can
facilitate the improvement of molecular mechanics force fields
and chemical shift prediction algorithms.

■ THEORY

Chemical Shift Autocorrelation. The chemical shift is a
scalar measure of a spin’s local structural (chemical) environ-
ment and is sensitive to secondary structure, hydrogen bonding,
proximity of ring currents, and other effects. It can be measured
for NMR active isotopes, in particular 1H, 13C, and 15N. A more
thorough discussion of the chemical shift and methods for its
computation (i.e., ‘forward models’) can be found in extensive
literature on the subject, e.g., ref 29. Here, δi(x(t)) is the
chemical shift of spin i given the molecular configuration x(t) at
time t. Its autocorrelation function, gi(τ) takes the form:23

τ δ δ δ τ δ= ⟨ − + − ⟩g t tx x( ) ( ( ( )) )( ( ( )) )i i i i i (1)

where δi is the time average of the chemical shift of a spin, and
the angular brackets denote ensemble averaging. Thus, if we are
able to evaluate or predict δi(·) and have a description of the
time evolution of x (e.g., from a sufficient amount of MD
simulation data), we can evaluate gi(τ). In practice, δi(·) will be

some approximate forward model: a chemical shift prediction
algorithm. In what follows, we will drop the subscript i for
simplicity, but assume that we can compute such a function for
each spin of interest.

Exchange Induced Relaxation Rate R2
ex. The transverse

relaxation rate R2 is a sum of multiple contributions arising
from relaxation mechanisms due to dipole−dipole interactions,
chemical shift anisotropy, chemical (conformational) exchange,
and other effects. In this work, we are exclusively concerned
with the contribution from conformational changes. In the fast-
exchange limit, the exchange induced contribution R2

ex to the
transverse relaxation rate R2 may be expressed in terms of the
chemical shift autocorrelation function g(τ):30

∫πν τ τ=
∞

R d g(2 ) ( )2
ex

0
2

0 (2)

where ν0 is the Larmor frequency of the observed nuclei in the
particular magnetic field. This theory may be readily extended
to describe the quenching of exchange induced relaxation in
spin-lock experiments as a function of spin-lock frequency, ν1:

54

∫ν πν τ τ πν τ=ρ

∞
R d g( ) (2 ) ( ) cos(2 )1 ,SL

ex
1 0

2

0
1 (3)

or the interpulse delay, τCPMG = 1/4νCPMG, in Carr−Purcell−
Meiboom−Gill (CPMG) experiments:23

∫ν πν τ τ πν τ=ρ

∞
R d g( ) (2 ) ( )tri(2 )1 ,CPMG

ex
CPMG 0

2

0
CPMG

(4)

where tri(·) is a triangle-wave function of linear segments
connecting the points (nπ, (−1)n) in the (x, y) -plane
∀ ∈ n 0. In both eqs 3 and 4, the experimental modulation
of the autocorrelation function allows us to measure the
spectral density by adjusting an experimental gauge − τCPMG or
ν1. Similar experiments and expressions exist for multiple
quantum relaxation rates.23,55−58

Markov Models and Prediction of Stationary and
Dynamic Observables. A MSM is a discrete approximation
of the full phase space Markovian dynamics.46,51,59 An MSM
consists of (1) a discretization of the phase space into N
microstates that are often found by clustering simulation data
after projecting them onto a reduced-dimensional set of slow
collective coordinates,51,60,61 and (2) after mapping the
simulation data to the microstates, a transition probability
matrix T(Δt) is estimated (usually by maximum-likelihood or
Bayesian inference). The elements Tij(Δt) of T(Δt) denote
conditional transition probabilities of a system arriving in state j
at time t + Δt given that it has been in state i at time t.51 For
molecular systems in equilibrium, T(Δt) is often estimated so
as to fulfill detailed balance.62 We note that in order to have a
self-consistently valid MSM, the state space discretization and
the lag-time, Δt, must be chosen in such a manner that the
dynamics described by T(Δt) satisfies the Chapman−
Kolmogorov equation, T(kΔt) = Tk(Δt), within statistical
uncertainty.51

For practical applications, the number of microstates N can
be on the order of hundreds to thousands, which makes an
intuitive understanding and analysis of the resulting MSM
difficult. Different approaches have been suggested to obtain a
coarse-grained MSM by lumping microstates into M ≪ N
macrostates (in a deterministic or fuzzy assignment).53,63−65

Here we use HMSMs for this purpose.53 HMSMs describe the
molecular kinetics as exchange between metastable distribu-
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tions of microstates, and we thus also have structural
representations for each metastable state. Besides greatly
facilitating analysis, HMSMs have number of attractive
properties over a direct coarse-graining of the transition matrix
discussed in detail elsewhere.53 In particular, they can provide
significantly better estimates of the molecular kinetics than
regular MSMs itself, as they are not limited by Markovianity in
the microstate space, i.e., they can often work well despite
suboptimal state space discretizations.
In order to compute experimental observables from MSMs,

one can proceed following the approach suggested in.66−68 If
F(x) is a forward model of an experimental observable, e.g., a
model that predicts the chemical shift of a given atom from the
protein configuration x, then the average value of this
observable in the set of configurations Si that comprise the
ith microstate is computed by averaging the sampled
configurations in this state:

∑=
∈N

Ff x
1

( )i
i S

i
x i i (5)

where Ni is the number of samples in set Si.
In all cases considered here, the transition probability matrix

T(Δt) is estimated enforcing detailed balance and therefore has
a unique stationary distribution π with

π π= ΔtT( )T T

This allows us to compute stationary expectation values
(ensemble averages) of any experimental observable Ocalc

provided we are able to compute f (eq 5), as

∑ π π= = ·
=

O f f
i

N

i i
calc

1 (6)

where · denotes the scalar product. Such a prediction of an
ensemble average can be directly compared with NMR
observables, such as 3J-couplings and residual dipolar couplings.
However, we can go beyond stationary ensemble averages

and use the eigenvalues and eigenvectors of the MSM transition
probability matrix T(Δt) with lag-time Δt to express the
autocorrelation function g(τ) of a particular experimental
observable (i.e., a chemical shift) as a multiexponential
sum41,49,66 (see Supporting Information for a derivation):

∑τ τ τ= −
=

g c( ) exp( / )
i

m

i i
2

ex

(7)

with

τ
λ

= − Δ
| |

= ·t
c f l

log
, ( )i

i
i i

ex 2

(8)

where λi is the ith eigenvalue, associated with the left
eigenvector li of T(Δt) respectively, m ≤ N, and τi

ex is the
relaxation time scale of the ith eigenprocess, that is sometimes
referred to as the implied time scale. The direction of
conformational exchange on the exchange network associated
with a eigenprocess is encoded by the associated eigenvector.
We use the standard convention where the eigenvalue-
eigenvector pairs are sorted from largest to smallest. In this
manner, the slowest relaxing processes have the smallest
indices. Furthermore, note that the first eigenvalue is always
one for Markov models and corresponds to the equilibrium
process.

If we are able to compute chemical shifts of each of our
microstates, the MSM directly provides us with a model of the
chemical shift autocorrelation function g(τ) as a sum of
exponential decays, with amplitudes ci and implied time scales
τi
ex. It is well-known that analytical solutions for eqs 3 and 4 are
easily accessible for autocorrelations functions of the form (eq
7):54
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τ
τ ν
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+ρ

=

⎛
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2

2
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1

2
(9)

and23,69
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Similarly for eq 2 we get

∑πν τ=
=

R c(2 )
i

m

i i2
ex

0
2

2

ex

(11)

Consequently, the approach presented here is analogous to
what has been approached previously,23 however, with a key
difference: the amplitudes and time-scales are obtained from a
Markov model that has been computed from MD simulation
data, rather than through fitting of directly computed
autocorrelation functions using multiexponential decays. This
approach has a much broader scope because the Markov model
approach allows complex multiexponential kinetics to be
resolved by taking all microscopic transitions into account,
and it allows multiple short trajectories started from a
nonequilibrium distribution to be used instead of single long
“equilibrium” trajectories. Furthermore, our approach connects
microscopic conformational exchange observed in molecular
simulations to experimental observables, thus providing a
detailed mechanistic model of the data. A key to interpretation
here is the connection between Markov model eigenvectors
and relaxation time scales (eq 8), which allows to assign specific
structural rearrangements to experimentally measurable relax-
ation times.

■ RESULTS
Prediction of Correlation Functions and Comparison

of Different Chemical Shift Prediction Algorithms.
Comparison to experiments requires accurate prediction of
microscopic observables or forward models. In the case of
chemical exchange contributions to NMR, relaxation the
observable of interest is the chemical shift. Ab initio calculation
of chemical shift is a computationally expensive endeavor which
has sparked the development of a wide range of efficient,
empirical chemical shift predictors.70−73 First, we evaluate the
consistency of predictions when these algorithms are used to
compute chemical shift correlation function g(τ) from the
MSM (eq 7) versus the direct computation from the MD
trajectory. Apart from serving as a comparison of these
prediction algorithms, this step also acts a first internal
consistency check: Does the MSM reproduce the dynamics
observed in the MD simulations? To achieve this, we used a
previously published ∼1 ms MD simulation of BPTI74 for
which a 101 state Bayesian MSM was built (see Methods and
ref 62). The chemical shifts were predicted using four methods
displaying similar performance in prediction benchmarks.70−73
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In Figure 1 we show the results for 15N backbone amide
nitrogens of residues at position 15 and 39 which are adjacent

to a pair of cysteine residues that form a disulfide bond
previously shown to undergo significant chemical ex-
change.74−76 Corresponding plots for the two cysteines are
shown in Figure S1.
We see the MSM accurately predicts the directly computed

correlation functions for processes slower than the slow
nanosecond time-scale in all cases, and we find the contributing
processes have exchange time-scales in agreement with previous
analyses of the same MD data.23,74 We emphasize that MSMs
predict long time-scale behavior, and their time resolution is
around the lag time Δt. Therefore, we see systematic
differences between computed and predicted autocorrelation
function for time-scales faster than the MSM lag-time in most
cases (Figures 1 and S1). However, the (H)MSM lag-time will
in most practical cases be much faster than the temporal
resolution of the experiments considered here, and we therefore

do not anticipate this to affect predictions made with this
approach.
Note that the different chemical shift prediction algorithms

provide qualitatively, but not quantitatively, similar dynamic
responses. The PPM algorithm predicts systematically larger
amplitudes. This is likely due to the fact that PPM, unlike the
other algorithms, explicitly accounts for the ensemble averaged
nature of the training data. In turn, this may involve an
increased sensitivity of PPM compared to the other methods.
Nonetheless, the averaged contributions of different processes
are very similar for different prediction algorithms (see Figure
S2). This suggests that, although the absolute scale of the
chemical shift variation is not correctly predicted, it appears
that the relative contributions are fairly consistent, on average.
In other words, overall the scale of the computed chemical shift
variance will generally not be exact, limiting us to qualitative
comparisons with experimental data unless we invoke further
assumptions. In cases where multiple experimental observables
are available that depend on the same chemical shift variance,
we expect to be able to recover the correct absolute scale by
estimating a correction factor, α (see Methods).

Multiple Fast Microsecond Contributions to Ex-
change Induced Relaxation in BPTI. To assess the
predictive power of the MSM of BPTI established above and
to benchmark the different chemical-shift prediction algorithms,
we back-computed partial CPMG relaxation dispersion
amplitudes and compared them to experimental data (see
Figure 2). We find good qualitative agreement for all chemical-
shift predictors, with the relative amplitudes being surprisingly
close. Again, PPM generally predicts the largest amplitudes.
The degree of agreement is similar to that achieved in a
previous analysis.23 The experimental data set which is
primarily sensitive to slower dynamics (ms) (Figure 2E−H)
is not described as well as the data set that is also sensitive to
faster dynamics (∼μs−ms) (Figure 2A−D). We anticipate this,
as the slowest implied time-scale observed in our MSM is in the
range 10−100 μs (see Figure S3), outside the sensitivity range
of the former experiment. This observation is consistent with
previous analyses of this BPTI simulation23,74,77 and demon-
strates that (H)MSMs can provide models limited to fast
exchange dynamics, until more extensive molecular simulations
become feasible. As discussed in the previous section, we do
not expect to have quantitative agreement with this class of
experimental data, as the employed prediction algorithms have
systematic inaccuracies in the absolute amplitudes for this class
of experiments.
There are four processes associated with the predicted

experimental data (Figure 2) which all predict exchange close
both C14 and C38 for all four prediction algorithms (see Figure
S2). This suggests that multiple independent, correlated
dynamic modes exist in BPTI, and none of the relaxation is
due to localized conformational changes only affecting one of
the sites. We characterize these motions structurally by coarse-
graining the 101 state MSM into a 4 state HMSM (see
Methods and Figure 3). The HMSM reveals a kite-shaped
network of three mutually interconnected states of which one
of these is connected to a fourth, low-population state. The two
most populous states (blue, ∼68%, and purple, ∼20%) involve
a discrete switch in the backbone residues 12−15 and subtle
repopulation of the distribution rotameric states in C14 and
C38. The third most populous state (yellow, ∼8%) has
significant flexibility in the residues surrounding C14. Finally,
the least populated state (orange, ∼3%) involves pivoting of

Figure 1. Comparison of autocorrelation functions g(τ) computed
using four chemical shift predictors either through direct computation
(full line) or using a 101 state Bayesian MSM (dashed line). The lag-
time (Δt) is represented by the hatched area up to a vertical dashed
black line. Predictions were performed with ShiftX2 (A, E), Sparta+
(B, F), Camshift (C, G), and PPM (D, H). The shaded areas
correspond to a 95% confidence interval calculated from the Bayesian
MSM. ShiftX2 was used without the SHIFTY option.
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residues 36−42, considerable flexibility of N-terminal residues
1−15, and again a slight repopulation of χ1 angles in C14 and
C38 (Figure 3B). The slowest process involves repopulation
between the purple, yellow, and orange states, and the second
slowest process involves repopulation between the orange,
yellow, and blue states. The latter of these has the largest
contribution (see Figures S2, S3, and 3A). The third slowest
process involves exchange of the yellow state with either of the
other states. Finally, we observe the four HMSM states capture
transitions observed in the MD trajectories of 15NH chemical
shifts and χ1 angles in C14 and C38 (Figures 3B and S5).
Overall, our HMSM is very similar to the coarse-grained
description presented by Shaw and co-workers in their original
study.74 Although both finer and more coarse kinetic models of

the same MD trajectory have been presented in the literature
(e.g., ref 80), we here limit the analysis to a level of detail
warranted for by the experimental sensitivity of the observables
considered (Figures S2 and S4).
As has been suggested previously,23,75 it appears that the

relaxation mechanism in BPTI may be more complex than the
phenomenologically derived three-state models based on 15N
and 13C relaxation data.75,81 Specifically, instead of directly
connecting the relaxation mechanism to repopulations in the
rotamer distributions or jumps in-between rotameric states, we
here find that it depends on multiple modes of concerted
rearrangements in the backbone and side-chains. However, the
implied time-scales observed in these simulation do not match
experiments exactly, which does not exclude the possibility of

Figure 2. Comparison of predictions from a Bayesian MSM (full lines, shaded area: 95% CI) of (A−D) partial CPMG relaxation dispersion
amplitudes: ΔR2

ex = R1ρ,CPMG
ex (15.4 s−1) − R1ρ,CPMG

ex (∞) ≈ R2
ex 78 and (E−H) ΔR2

ex = R1ρ,CPMG
ex (10 ms−1) − R1ρ,CPMG

ex (1 ms−1).79 Predicted curves are
based on contributions from the four slowest processes in the MSM.

Figure 3. Illustration of a four-state HMSM coarse-graining of the 101 state Bayesian MSM of BPTI. (A) a network plot of four metastable
configurations and their kinetic connectivity. Transition rates are shown by the arrow and are averages and the 95% confidence interval both in μs.
(B) Color coded time traces of χ1 angles (upper) and

15NH chemical shifts (lower) in C14 (left) and C38 (right). Color coding was done according
to the assignment of the MD frame in the coarse-grained HMSM, colors are as shown in (A). Chemical shifts shown were predicted using ShiftX2
(without SHIFTY option). Molecular structures were rendered using PyMOL (DeLano Scientific LLC).
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an even more complex mechanism that depends on conforma-
tional transitions that have not been sampled in the given
simulation.
Dissection of Fast Microsecond Chemical Exchange in

Ubiquitin. To further assess the potential of Markov models to
obtain microscopic and mechanistic descriptions of chemical
exchange induced relaxation, we chose ubiquitin as an example.
Ubiquitin is a well-characterized protein where the presence of
fast microsecond chemical exchange has been reported in
multiple studies.26,58,82−86 We used a recently published 1 ms
trajectory at a temperature of 300 K85 to build a 128-state
Bayesian MSM.62 This model was used in all analyses shown
below. For convenience, we limit ourselves to chemical shift
predictions using Camshift.71 The resulting MSM reveals three
processes with relaxation times in the range of tens to hundreds
of microseconds which have significant amplitudes for 15N and
1H backbone resonances (see Figures S2 and S3). We note that
average contributions of the different processes to predicted
15N relaxation are very similar to the other three prediction
algorithms considered above (see Figure S2).
The time-scales predicted by the MSM are slower (slowest

implied time scale: ∼80 μs) than those recently reported in
experiments at temperatures close to 300 K (308 K, ∼5 μs), but
match time-scales reported at 277 K fairly well (∼50 μs).87

Consequently, we used an average of previously reported
Arrhenius activation energies84 to extrapolate the apparent
relaxation time scales (277 K) prior to comparing to
experiments. This is a rather small intervention considering
different experimental and computational studies at varying
sample conditions have reported a relatively broad range of
microsecond time-scales dynamics to affect the same regions in
ubiquitin.26,58,85,87−89 Consequently, these rates may sensitive
to the exact experimental conditions and the presence of
different cosolutes.90 However, we test this intervention
thoroughly below with recently reported data sets at multiple
temperatures.87

To obtain a model that facilitates a mechanistic interpreta-
tion of the predicted experimental observable, we first build a
coarse-grained four-state HMSM (Figure 4A). This model
reveals a linear exchange scheme where each state has distinct

structural characteristics. The overall features of the HMSM are
very similar to what was described in the original paper by
Piana et al.85 The two most populous (green, ∼70%, and blue,
∼20%) describe a flip of the loop at 50−54 which repopulates
the preference of the H−N vector of G53 between inward and
outward pointing configurations (Figure 4A), respectively, as
described in previous computational91 and experimental
studies.87,92,93 Two alternative states (magenta, ∼6%, and
yellow, ∼3%) both involve a partial unwinding of the C-
terminal end of helix 1 (ca. residues 31−38). The less
populated state (yellow) stabilizes an alternative configuration
of the loop downstream of the unwound helix 1, through
hydrogen bonding of Hϵs of K33 to exposed carbonyl oxygens
in residues 28 and 29, whereas this loop displays increased
flexibility in the other partially, unwound state (magenta)
(Figure 4A). The yellow state is also characterized by a kink in
the most C-terminal β-strand following I71 whose side-chain is
flipped outward and thus solvent exposed.
Interestingly, visualizing the direction of the slowest process

in the MSM on this network as a gradient (Figure S7) reveals
that it involves exchange between the yellow and green and
blue states. This slowest process is the origin of a major false-
positive prediction of 15NH−R2

ex values (see Figure S6).
Furthermore, it was previously suggested that the population
of the yellow state is overemphasized in the simulation
trajectory due to insufficient sampling, force field imbalances,
or a combination of these.85 Since exchange to/form this state
is the key feature of the slowest process (Figure S7), we
decided to continue the analysis below leaving out this process
resulting in what we here refer to as a reduced observable
model.
To validate the reduced observable model, we compared its

predictions to an extensive set of high-power RD 1HN R1ρ
SL and

CPMG experiments at multiple temperatures (see Figures 5
and S8−14). Using Arrhenius’ equation to extrapolate the time-
scales, we find that the reduced observable model agrees well
with the majority of these experiments when compared to the
full MSM (see Figures S8−14). These comparisons involve
estimation of an R2,intrinsic (intersection) and a overall scaling
factor (α, slope), for each RD profile (see Methods). This is

Figure 4. Illustration of a four-state HMSM coarse-graining of a 128 state MSM of ubiquitin. Major conformational features of the HMSM illustrated
by molecular renders of each of the four states: cyan, green, magenta, and yellow. In the center, a rendering of the free energy landscape projected on
the first two time-lagged independent components and cluster-centers color-coded according to the metastable assignment in the HMSM (see
Methods). Molecular structures were rendered using PyMOL (DeLano Scientific LLC).
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necessary, as we here only predict the R2
ex contribution up to a

scaling constant, as discussed above, and the experimental data
potentially contain contributions from other relaxation
processes. Instead, correlating these data to the MSM or either
of the three processes independently yields very comparable
agreements (see Table S1). This latter comparison con-
sequently provides additional validation independent of the
fitting parameters R2,intrinsic and α. Collectively these tests
suggest that the reduced observable model is a good consensus
model. These comparisons allow us to take a closer look at the
second and third slowest processes in our MSM and study how
they contribute to the respective experimental dispersion
profiles.
Next, we evaluate the influence of the second and third

slowest processes of the MSM (the reduced observable model)
on the predictions of 1HNR2

ex amplitudes and relate them to
structural changes in ubiquitin. We color code residues

according to which process dominates the predicted profiles,
e.g., which of the processes predicts a larger value of R1,ρ/
sin2(θ) for ωe → 0, i.e., independently of fitting parameters (see
Figure 6). The two processes have substantial overlap but

appear to form two lobes: the second slowest process mainly
affects a small cluster of residues involving loops 2 (residues
18−22) and 5 (residues 50−55), whereas the third slowest
process affects residues 45−48 through the β-sheet to the C-
terminal cap of α-helix 1 (residues 30−38). The slower of these
two processes is observable by high-power RD experiments
across the temperature range previously reported, whereas the
faster process is below experimental resolution at the higher
temperatures. Previous studies of ubiquitin found correlated
motions across the β-sheet as well in loops 2 (residues 18−22)
and 5 (residues 50−55). These motions were suggested to be
correlated with ubiquitin binding.92,94

Interestingly, Smith et al. report mutagenesis of residues
(E24A and G53A) results in a significant attenuation of
observed relaxation dispersion amplitudes in most residues.87

Both of these mutations are situated at positions dominated by

Figure 5. Representative set of 1HN R1ρ relaxation dispersion profiles
at 277 K (A, B), 292 K (C, D), and 308 K (E, F) predicted from a
reduced observable model of ubiquitin and corresponding exper-
imental data.87 Rates at temperatures 292 and 308 K were extrapolated
from apparent low-temperature kinetics (ca. 277 K) of the MSM using
an average of previously reported activation energies of 35 kJ mol−1.84

Bold black line represents the sum of the predicted dispersion profiles
of the second (blue) and third (green) slowest processes, scaled by α
and with an intersect of R2,intrinsic (estimated as described in Methods).
The blue and green lines have the same intersect (R2,intrinsic) and are
scaled by the same α, as was estimated for the sum to ensure
comparable scales. Gray shaded area represents the 95% confidence
interval of the predicted profile. The χ2 values shown are computed
using eq 14.

Figure 6. Visualization of the largest contributing process to predicted

1HNR2
ex values at temperatures 277 K (A), 292 K (B), and 308 K (C).

Residues with dominant contribution to the experimental observable
at the respective relaxation process are highlighted as green or blue
spheres. Molecular structures were rendered using PyMOL (DeLano
Scientific LLC).
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the second slowest process of the reduced observable model.
Conversely, the relaxation dispersion of I36 was reported to be
almost unaffected in either of these two mutants. I36 is spatially
proximate to a cluster of residues whose relaxation dispersion is
predicted to be dominated by the third slowest relaxation
process. This specific spatial attenuation of the exchange
induced relaxation could suggest that there are two
independent processes inducing the signals observed, and the
two modes of correlated motion previously described are
independent.94 It appears that the reduced observable model
presented here correlates well with this, and thus the two
processes of the model may be regarded as a possible
mechanistic description of the observed data. Since the time-
scales of these processes are very close (4.56 ± 0.34 μs and 3.59
± 0.41 μs, extrapolated values at 308 K), they are difficult to
deconvolute using conventional phenomenological fitting
approaches.

■ DISCUSSION
Analyzing MD simulations through a (H)MSM yields a
network model of the conformational kinetics of the system.
A key feature of (H)MSMs is that they can be constructed
using multiple short simulations started out-of-equilibrium and
predict the long-time scale dynamics. These models can be
used to compute stationary and dynamic experimental
observables for comparison with experimental data and thereby
serve as validation of both force field and the MSM as well as a
framework for detailed mechanistic interpretations of data.
While stationary experimental data have been used extensively
in the literature to validate MSMs, the use of dynamic
observables to the same purpose has been rare.66,95 Here we
establish a link between MSMs and the chemical exchange
induced relaxation measured in NMR experiments.
Predicting autocorrelation functions is the first step to

predicting R2
ex contributions. Doing this, we find that chemical

shift autocorrelation functions directly computed from MD
simulations compare well with those computed from the
corresponding MSMs, which self-consistently validates the
long-time scale predictions of the MSM. However, we also
observe that although different chemical shift prediction
algorithms provide similar qualitative responses, they signifi-
cantly differ in the absolute amplitudes predicted (g(0)). This
indicates that they have different levels of sensitivity. Indeed,
the PPM algorithm systematically predicts higher amplitudes
and has been shown to provide improved predictions for
several spin-types, such as side-chain methyl 1H and 13C
resonances, particularly prone to fast motional averaging.70

Since predicted chemical shift amplitudes are in general only
correct up to a scaling constant, we found that back-computed
partial CPMG relaxation dispersion amplitudes also only agree
with experimental data qualitatively. However, for relaxation
dispersion profiles, we are able to improve the agreement by a
estimating a slope and an intersect. The estimated slopes (α)
are quite large, which suggests that the empirical chemical shifts
will, as a rule, provide a lower bound for the chemical shift
variance. A possible remedy to this is quantum mechanics based
predictions. These are expected to have a larger overall
sensitivity.96,97 A part from this, ab initio approaches will be
attractive in cases where nonstandard amino acids, post-
translational modifications, small-molecule ligands, or nucleic
acids are present, as most empirical methods currently do not
describe such systems. Since (H)MSMs reduce the overall
number of prediction calculations needed to compute the

autocorrelation functions (as little as one representative
computation per microstate), we anticipate this route to
become accessible in the near future.
The usefulness of the MSM framework in the present

context depends on their ability to accurately predict
experimental observables. For two test systems, BPTI and
ubiquitin, we establish models using previously published MD
trajectories.74,85 In both cases we find good qualitative
agreement with experimental data, and for ubiquitin, we also
achieve good quantitative agreement with relaxation dispersion
profiles following the procedure described above. We show
how we can facilitate the analysis of the MSM by coarse-
graining them to HMSMs and thereby obtain models between
a few conformational states that provide a straightforward
microscopic interpretation of the experiments. In the case of
ubiquitin, we find two independent correlated processes which
contribute to the observed relaxation dispersion profile: one
which involves a previously described main-chain switch
(around G53)87,92,93 and another process which involves
residues abut to this switch through the β-sheet to residues
31−38. Both of these sites previously been reported to undergo
motion,58,87,89,92−94,98 however, to which extent these motions
were correlated has been unclear. We find mutagenesis within a
cluster of residues involved in the second slowest process
primarily affects experimental observables predicted by the
most strongly affected by this process. While residues primarily
affected by the third slowest process are also affected in these
mutants, the only unaffected residue, I36, is predicted to be in
the region affected by the third slowest process. These results
illustrate the potential of the framework to deconvolute
multiple dynamic processes in proteins and thereby facilitate
a mechanistic interpretation of experimental data and
potentially aid the selection of residues as targets for
mutagenesis. Still, as the methodology is sensitive to current
inaccuracies in the chemical shift model and the force field, we
stress the importance to experimentally test hypotheses
generated using this framework.
The method presented here is applicable in a narrow but

important range of experimental parameters. First, we only
consider the contribution of conformational changes to the
relaxation rate, and we only treat this contribution in the fast-
exchange limit, but also only for dynamics slow compared to
the MSM lag-time, which is usually much faster than the overall
correlation time τc, (typically in the few nanosecond range for
small proteins). However, a (H)MSM can be combined with
models of spin-relaxation to account for other contributions,
even outside the fast-exchange regime. For instance, the
transition matrix and the chemical shifts of the microstates
can be integrated into an analysis based upon the stochastic
Liouville equation.99,100 As it is becoming increasingly feasible
to obtain models of millisecond and slower dynamics in
proteins, such an approach may become a keystone to rigorous
mechanistic data analysis in the near future.

■ CONCLUSION
We have presented a new framework for the prediction of
chemical exchange induced relaxation. The approach uses MD
simulations analyzed in terms of an N-state exchange master-
equation type model, a (hidden) Markov state model, which we
demonstrate how to use to compute a number of chemical
exchange sensitive NMR relaxation observables. While the
presented approach is subject to current limitations such as
sampling and force field inaccuracies, it has a number of distinct
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advantages over previous efforts. We are not limited to
detecting the metastable states in through the chemical shift,
but we can use any metric computable from a MD simulation.
This means that we can detect processes and metastable states
which are not well resolved by the chemical-shift data.
Consequently, we are able to dissect multiple independent
processes, each of which have contributions to the observed
signals which otherwise could have been interpreted as a single
process with higher amplitude. Second, since the model is
estimated for the molecular system as a whole, and not for
individual resonances at a time, we can trace the influence of
global dynamical processes and thereby connect correlated
structural motions to specific experimental observables. This is
in strong contrast to recent studies using long MD simulations
to predict these experiments.23,24 Finally, high-quality MSMs
can be built without the need to explicitly simulating the time-
scales of these experiment, which is likely to remain infeasible
for the foreseeable future. With improving strategies for the
construction of MSMs101 and incorporating experimental data
as restraints in simulations102−105 as well as more sophisticated
chemical shift predictors, we hope to see the role of the current
limitations reduce in the near future.

■ METHODS
Bayesian Markov State Models and Hidden Markov State

Models. The previously published ∼1 ms trajectory of BPTI74 was
strided in 25 ns steps and used to construct a Bayesian MSM.62 To
partition the configuration space, we used all pairwise Cα distances
(1653) as input to time-lagged independent component analysis
(TICA, (lag time: 2.5 μs) to project the data to a five-dimensional
space of slowly relaxing collective variables.106 This projection was
transformed to a kinetic map in which Euclidean distance corresponds
to kinetic distance.107 This space was clustered into 101 states using
the k-means algorithm and a count matrix was determined(lag-time:
625 ns). Subsequently, we sampled 50 transition probability matrices
using the Bayesian formalism for reversible Markov models previously
described62 and validated the models by using the Chapman−
Kolmogorov test and testing the convergence (Δt independence) of
the implied time-scales51 (see Figure S3). These two validation steps
test Markovianity and self-consistency of the models. The sampled
transition probability matrices were used to evaluate all sample
averages and confidence intervals shown in this paper and the
Supporting Information. The MSM was used to seed the estimation of
a four-state HMSM with the same lag-time as the count matrix.53

We built a Bayesian MSM using the previously published 1 ms MD
simulation of ubiquitin in the CHARMM22* force field.85 The
trajectory was strided into 5 ns steps, and we used the same procedure
as for BPTI to conduct the state segmentation count matrix estimation
and validation (see Figure S3). We used the same protocol as above
with the following parameters: number of pairwise Cα distances: 2850,
TICA lagtime: 55 ns, TICA space dimensionality: 3, number of
clusters: 128, and MSM/count matrix lag-time: 125 ns. This MSM was
used to seed the estimation of a four-state HMSM with the same lag-
time. All analyses were performed using PyEMMA 2.2.80

Prediction of High-Power Relaxation Dispersion Experi-
ments. Comparison with R1ρ,SL and R2,eff (see Figures 5 and S8−14)
experiments involved the estimation of two positive constants, R2,intrinsic
and α, using

θ α ω= +ρ ρR R R/sin ( ) ( )e1
calc 2

2,intrinsic 1 ,SL
ex

(12)

for spin-lock experiments where R1ρ,SL
ex (ωe) is computed from the

MSM using eq 9, and using

α ν= +R R R ( )2,eff
calc

2,intrinsic 2,eff CPMG (13)

for CPMG experiments where R2,eff(νCPMG) is computed from the
MSM using eq 10. Unless otherwise stated, the second and third

slowest processes were used to compute the terms R1ρ,SL
ex (ωe) and

R2,eff(νCPMG). The tilt angle in the rotating frame is given by tan θ =
ω1/Ω, where Ω is the average chemical shift, and ω1 is the spin-lock
field strength.40 The fitted coefficients (R2,intrinsic and α) for each
residue and temperature are repored in the Supporting Information.
These fits assume that all auxiliary relaxation contributions (including
any minor R1 contributions) are described by R2,intrinsic and that
αR1ρ,SL

ex (ωe) or αR2,eff(νCPMG) provide the full exchange contribution to
the observed relaxation rate. Alternatively, if all nonchemical exchange
contributions were known, they could readily be included in the
formalism, resulting in an elimination of the free parameter R2,intrinsic.
The shown χ2 values were computed as

∑χ σ σ= − +
<N

R R
1

( ) /( )
i N

i i
i i

2
2
pred,

2
exp, 2

exp, pred,
2

(14)

where R2
pred is a predicted value corresponding to the experimental

value (i.e., R1ρ
calc/ sin2(θ) or R2

exp,i with uncertainty σexp,i). The prediction
error is σpred,i = α·std(RX

ex(ν)), where std(RX
ex(ν)) is the standard

deviation of the predicted exchange contribution from the Bayesian
MSM and X = 1ρ,SL or X = 2,CPMG for spin-lock and CPMG type
experiments, respectively.

Prediction of Chemical Shifts. For BPTI prediction was
performed using the following software ShiftX2,72 Sparta+,73 AL-
MOST108 (Camshift),71 and PPM.70 All software was used with
default parameters, except ShiftX2 which was used without the
SHIFTY option. For ubiquitin only Camshift (almost) predictions
were performed for all main-chain resonances (only 15NH and 1HN

were used here). In addition, we carried out 15NH chemical shifts
prediction using ShiftX2,72 Sparta+,73 and PPM70 for 25 randomly
sampled structures of each of the 128 microstates of the Bayesian
MSM to generate Figure S2.
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